mysql

在centos上安装MySQL

sudo yum install Percona-Server-server-55.x86_64
sudo service mysql start
sudo chkconfig --level 2345 mysql on
mysql_secure_installation

重置MySQL root 密码

  1. 停止MySQL服务 sudo service mysql stop

  2. 设置MySQL安全模式 sudo mysqld_safe --skip-grant-tables --skip-networking &

  3. 无密码进入MySQL mysql -u root

  4. 重置密码

mysql> use mysql;  
mysql> update user set password=PASSWORD("mynewpassword") where User='root';  
mysql> flush privileges; 

如果 update 不成功,比如报错说没有 password 字段,看看自己的MYSQL版本,新版本 5.7 密码字段叫 authentication_string

UPDATE user SET authentication_string=PASSWORD("NEWPASSWORD") WHERE User='root';
  1. 重启MySQL服务 sudo service mysql restart

  2. 苹果上重启后可能还遇到问题ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this statement.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'YourNewPass';

MYSQL 创建用户并授权

创建

insert into mysql.user(Host,User,Password) values("localhost","cron",password("cron"));
flush privileges;

以上方法过时了。。。采用
CREATE USER 'cron'@'localhost' IDENTIFIED BY 'cron';
授权

create database cron;
grant all privileges on cron.* to cron@localhost identified by 'cron';
# grant select,update on cron.xxx, cron.yyy to cron@localhost identified by 'cron(password)';
flush privileges;

以上方法不对,去掉后面的 identified by

json invalid character ':' after top-level value
json 字符串紧密相连,不能出现其他多余空格

ERROR 3140 (22032) at line 20: Invalid JSON text: The document root must not be followed by other values. at position 8 in value for column clusters.master.

'{"master":{"apiserver":{"leader":"","logdir":"","nodes":[]},"controllermanager":{"leader":"gh-inf-hulkqa-kubecontroller-test01.corp.sankuai.com","logdir":"","nodes":[]},"etcd":{"leader":"","logdir":"","nodes":[]},"scheduler":{"leader":"gh-inf-hulkqa-kubescheduler-test01.corp.sankuai.com","logdir":"","nodes":[]}}}'

第二,json字符串在mysql插入的时候,比如是'{}'在最外层

MySQL 表定义范例

用于爬取 icd10data 中的数据,mysql 数据库模式如下:

drop database if exists `icdInfo`;
create database `icdInfo`;
use `icdInfo`;

drop table if exists `Tbl_ICD10CM`;
create table `Tbl_ICD10CM` (
    `ClinicalId` int unsigned auto_increment not null,
    `DiagnosisCode` varchar(255) not null default '00' comment '疾病诊断码',
    `DiseaseName` varchar(255) comment '疾病名称',
    `ClinicalInfo` text comment '临床信息描述',
    `CodeIntervalUrl` varchar(255) not null comment '抓取该信息的url',
    `ScrapedTime` timestamp not null comment '更新时间',
    primary key (`ClinicalId`)
) ENGINE=InnoDB

mysql 数据库备份

备份整个数据库

mysqldump -u[username] -p [databasename] > databasename.sql

备份数据库中的某些表

mysqldump -u[username] -p [databasename] [tablename1] [tablename2] > dumps.sql

恢复数据库

mysql -u[username] -p [databasename] < databasename.sql

另一种备份方式是数据库元数据和数据表分开在不同的文件中

mysqldump -u[username] -p -t -T/path/to/directory [database] --fields-enclosed-by=\" --fields-terminated-by=,

只获取数据库元数据备份或者表元数据备份

mysqldump --no-data -u someuser -p mydatabase
mysqldump -d -u someuser -p mydatabase table1 table2 table3

导出 Mysql 数据 到 csv

导出到csv时,需要注意分隔符和转义字符的问题;
- Excel saves \r\n for line separators.
- Excel saves \n for newline characters within column data
- Have to replace \r\n inside your data first otherwise Excel will think its a start of the next line.

USE `icdInfo`;
SELECT
DiagnosisCode,
REPLACE( IFNULL(ClinicalInfo, ''), '\r\n' , '\n' ) AS ClinicalInfo
FROM Tbl_ICD10CM
INTO OUTFILE '/var/lib/mysql-files/icd.csv' 
FIELDS TERMINATED BY ',' ENCLOSED BY '"' ESCAPED BY '"'
LINES TERMINATED BY '\r\n';

出错

The MySQL server is running with the --secure-file-priv option so it cannot execute this statement

解决办法是Mysql默认有保护措施,只能输出文件到特定目录,通过一下命令查看目录

mysql> SELECT @@global.secure_file_priv;

mysql 查看索引

show index from table_name;

ALTER TABLE disks_tbl ADD COLUMN `auto_backup` VARCHAR(32) CHARACTER SET 'ascii';
ALTER TABLE mebs_snapshots_tbl DROP COLUMN `auto_take`;
ALTER TABLE mebs_snapshots_tbl ADD COLUMN `snapshot_type` VARCHAR(32) CHARACTER SET 'ascii' NOT NULL DEFAULT '';

ALTER TABLE disks_tbl ADD INDEX ix_disks_tbl_auto_backup (`auto_backup`);
ALTER TABLE mebs_snapshots_tbl ADD INDEX ix_mebs_snapshots_tbl_snapshot_type (`snapshot_type`);

CREATE TABLE `mebs_snapshot_strategy_disks_tbl` (
`created_at` datetime NOT NULL,
`updated_at` datetime NOT NULL,
`deleted_at` datetime DEFAULT NULL,
`deleted` tinyint(1) NOT NULL,
`row_id` bigint(20) NOT NULL AUTO_INCREMENT,
`mebs_snapshot_strategy_id` varchar(36) CHARACTER SET ascii NOT NULL,
`disk_id` varchar(36) CHARACTER SET ascii NOT NULL,
`cron_job_id` varchar(36) CHARACTER SET ascii DEFAULT NULL,
`open` tinyint(1) NOT NULL,
PRIMARY KEY (`row_id`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_deleted` (`deleted`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_open` (`open`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_mebs_snapshot_strategy_id` (`mebs_snapshot_strategy_id`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_created_at` (`created_at`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_disk_id` (`disk_id`),
KEY `ix_mebs_snapshot_strategy_disks_tbl_cron_job_id` (`cron_job_id`)
) ENGINE=InnoDB AUTO_INCREMENT=92 DEFAULT CHARSET=utf8mb4

mysql sql语句结果导出

mysql -uroot -p1234 -Ne "use cron; select id from cron_jobs_tbl;" > /tmp/jobs.txt
insert into cron_logs_tbl(id,cron_job_id,created_at,updated_at) values(uuid(),"001d4865-127c-45ba-90de-6c1f74e5a782",now(),now());

MySQL大数据统计Case Study

drop database if exists `StudentManager`;
create database `StudentManager`;
use `StudentManager`;

drop table if exists `students`;
create table `students` (
    `Id` int unsigned auto_increment not null,
    `Name` varchar(255) not null,
    `Class` int unsigned,
    `Age` int unsigned,
    `Sex` varchar(255),
    `Math` int,
    `Computer` int,
    `Physics` int,
    `Registry` timestamp not null,
    primary key (`Id`)
)

SQL JOIN

inner join

SELECT <field_list> FROM TABLE_A A INNER JOIN TABLE_B B ON A.KEY = B.KEY
求左右两边相同键值的笛卡尔积。举个例子,假设 A.a1 在左边有两条记录,rec_num(A.a1) = 2, B.a1 在右边有一条记录 rec_num(B.a1) = 1(一般是B的主键), 那么连接之后,a1 记录就有 2 x 1 条记录。如果 A.a1 有 m 条记录, B.a1在右边有多条设为 n 条记录,则最后 a1 记录就有 m x n 条, 这就是笛卡尔积。即 左边的每一条和右边的每一条都得组合。这里做的笛卡尔积只对 m >= 1 && n >= 1 的时候才会加入最终的连接结果,这就是 inner join, 只包含 连接键值满足 m >= 1 && n >= 1 的笛卡尔积。

left join

SELECT <field_list> FROM TABLE_A A LEFT JOIN TABLE_B B ON A.KEY = B.KEY
以左边基准,求左右两边相同键值的笛卡尔积。 这里的笛卡尔积必须包含左边表所有的键值,如果 rec_num(A.a1) > 0 && rec_num(B.a1) = 0,这在 inner join 中就会被去除,但是在 left join 中,会保留这些 A.a1 记录,连接起来的右边表的值都设置为默认 null。A.a1, A.a2,..., B.null, B.null...

right join

SELECT <field_list> FROM TABLE_A A RIGHT JOIN TABLE_B B ON A.KEY = B.KEY
和left join 相反,以右边基准,求左右两边相同键值的笛卡尔积。 这里的笛卡尔积必须包含右边表所有的键值,如果 rec_num(A.a1) = 0 && rec_num(B.a1) > 0,这在 inner join 中会被去除,但是在 left join 中,会保留这些 B.a1 记录,连接起来的左边表的值都设置为默认 null。 A.null, A.null, ... A.null, B.a1, B.a2, B.a3...

outer join

SELECT <field_list> FROM TABLE_A A FULL OUTER JOIN TABLE_B B ON A.KEY = B.KEY
这个就是 left join + right join。 左右两边的键值都保留。

left join excluding inner join

SELECT <field_list> FROM TABLE_A A LEFT JOIN TABLE_B B ON A.KEY = B.KEY WHERE B.KEY IS NULL

right join excluding inner join

SELECT <field_list> FROM TABLE_A A RIGHT JOIN TABLE_B B ON A.KEY = B.KEY WHERE A.KEY IS NULL

outer join excluding inner join

SELECT <field_list> FROM TABLE_A A FULL OUTER JOIN TABLE_B B ON A.KEY = B.KEY WHERE A.KEY IS NULL OR B.KEY IS NULL

以上在SQLAlchemy中的对应关系
- Visual Representation of SQL Joins

SQL 执行顺序

SELECT DISTINCT column, AGG_FUNC(column_or_expression), 
FROM mytable
    JOIN another_table
      ON mytable.column = another_table.column
    WHERE constraint_expression
    GROUP BY column
    HAVING constraint_expression
    ORDER BY column ASC/DESC
    LIMIT count OFFSET COUNT;

根据数据库不同,其实内部的执行顺序是不确定的,同一中数据库不同查询语句也有可能不同,因为有sql优化器和执行计划,但是有一个大致默认的顺序,
FROM & JOIN -> WHERE -> GROUP BY -> HAVING -> SELECT -> DISTINCT -> ORDER BY -> LIMIT/OFFSET
- Order of execution of a Query

MySQL 聚合函数

MySQL 聚合函数可以理解成 Map/Reduce 中的 reduce 函数,就是将一个集合经过运算之后降维成一个数.常见的聚合函数就是我们数学统计上的个数(不同值的个数),求和,均值,最大,最小,极差,标准差,方差等.这些函数 SQL 直接提供的.Statistical functions in MySQL

mysql> SELECT Class, COUNT(Age) FROM students GROUP BY Class;

mysql> SELECT Class, COUNT(DISTINCT Age) FROM students GROUP BY Class;

mysql> SELECT Class, MAX(Age) FROM students GROUP BY Class;

mysql> SELECT Class, MIN(Age) FROM students GROUP BY Class;

mysql> SELECT Class, SUM(Age) FROM students GROUP BY Class;

mysql> SELECT Class, AVG(Age) FROM students GROUP BY Class;

mysql> SELECT Class, SUM(DISTINCT Age) FROM students GROUP BY Class;

mysql> SELECT Class, AVG(DISTINCT Age) FROM students GROUP BY Class;

优缺点

含义 优点 缺点
均值 AVG 充分利用所有数据,适用性强 容易受到极端值影响
中位数 MEDIUM 不受极端值影响 缺乏敏感性
众数 MODE 当数据具有明显的集中趋势时,代表性好;不受极端值影响 缺乏唯一性:可能有一个,可能有两个,可能一个都没有

众数Mode, 需要我们做更复杂的操作,寻找某一个组的众数.

SELECT * FROM (SELECT Class, Age, COUNT(Age) As Count FROM students WHERE Class = 1 GROUP BY Age) AS temp WHERE Count IN (SELECT MAX(Count) FROM (SELECT Class, Age, COUNT(Age) As Count FROM students WHERE Class = 1 GROUP BY Age) AS temp);

聚合函数运用在一个集合数据上,因此对于查询出来的表或者分组都可用的,运用特别多的就是和 GROUP BY 一起使用.因为 GROUP BY 是无法打印出来每一个组的所有记录的!此时还有一个聚合函数 GROUP_CONCAT();此函数可以将每一组的某个字段值连接成一个字符串字段;

GROUP_CONCAT([DISTINCT] expr [,expr ...]
             [ORDER BY {unsigned_integer | col_name | expr}
                 [ASC | DESC] [,col_name ...]]
             [SEPARATOR str_val])

例如,查询每一个班上所有同学的Id, 并按照年龄大小降序.

mysql> SELECT Class, GROUP_CONCAT(Id ORDER BY Age DESC) FROM students GROUP BY Class;
+-------+------------------------------------------------------------------+
| Class | GROUP_CONCAT(Id ORDER BY Age DESC)                               |
+-------+------------------------------------------------------------------+
|     1 | 95,87,86,73,89,10,66,47,55,1,52,2,21,15,20,9,25,85,98            |
|     2 | 34,64,51,43,38,18,69,94,29,67,68,45,13,32,58,31,65,33,92,49,8,83 |
|     3 | 37,30,48,81,74,72,100,56,53,36,44,23,70,12,59,24,35,60,11,84     |
|     4 | 62,46,54,50,57,5,93,63,41,40,78,14,4,82,99,26,97,39,28,80        |
|     5 | 7,96,71,42,3,17,79,19,91,75,22,90,6,61,88,76,16,27,77            |
+-------+------------------------------------------------------------------+
5 rows in set (0.00 sec)

统计分组排序后的 TOP N

使用相关子查询

SELECT Id, Name, Class, Age 
FROM students s 
WHERE
  (
   SELECT COUNT(*)
   FROM students
   WHERE
   students.Class = s.Class AND students.Age >= s.Age
  ) <= 5
GROUP BY Class, Age DESC, Id;

+----+---------------+-------+------+
| Id | Name          | Class | Age  |
+----+---------------+-------+------+
| 86 | Bernd Baker   |     1 |   45 |
| 87 | Roger Smith   |     1 |   45 |
| 95 | Eve Moore     |     1 |   45 |
| 73 | John Baker    |     1 |   43 |
| 34 | Eve Smith     |     2 |   45 |
| 64 | Eve Smith     |     2 |   45 |
| 43 | Eve Baker     |     2 |   44 |
| 51 | Bernard Smith |     2 |   44 |
| 38 | John Smith    |     2 |   43 |
| 37 | Yvonne Miller |     3 |   45 |
| 30 | Eve Baker     |     3 |   44 |
| 48 | Eve Baker     |     3 |   43 |
| 81 | Bill Miller   |     3 |   40 |
| 62 | John Smith    |     4 |   43 |
| 46 | Bernd Smith   |     4 |   41 |
| 54 | Yvonne Baker  |     4 |   41 |
| 50 | John Baker    |     4 |   40 |
| 57 | John Smith    |     4 |   38 |
|  7 | Simone Miller |     5 |   44 |
| 96 | Eve Looper    |     5 |   42 |
|  3 | Bill Smith    |     5 |   41 |
| 42 | Zoe Smith     |     5 |   41 |
| 71 | Eve Smith     |     5 |   41 |
+----+---------------+-------+------+
23 rows in set (0.01 sec)

以上查询的意思就是,对于 students 表中的每一个学生,看他是不是该组的 TOP 5, 其实就是看有多少个和 s.Class 相同的学生他的年龄比 s.Age 大,如果个数小于 N 个, 就表明这个学生是 TOP N 中的, 因为 TOP N 中的记录,比他还大的必定少于 N 个; 但是这个版本的缺陷可以从结果看出来, 他无法正确统计值相同的情况!

UNION 集合并

mysql> (select * from students where Class = 1 order by Age desc limit 5)
    -> union all
    -> (select * from students where Class = 2 order by Age desc limit 5)
    -> union all
    -> (select * from students where Class = 3 order by Age desc limit 5)
    -> union all
    -> (select * from students where Class = 4 order by Age desc limit 5)
    -> union all
    -> (select * from students where Class = 5 order by Age desc limit 5)
    -> ;

方法就是单独查询每一类别的TOP N, 然后使用 UNION 并集;

User Defined Varibles

SELECT Id, Name, Class, Age
FROM
(
    SELECT Id, Name, Class, Age,
        @ClassRank := IF(@CurrentClass = Class, @ClassRank + 1, 1) As ClassRank,
        @CurrentClass := Class
    FROM students
    ORDER BY Class, Age DESC
) ranked
WHERE ClassRank <= 5
ORDER BY Class, Age DESC;

该SQL 的意思就是,给每一个类别中的学生设置rank, 他是通过已经排好序的 Age, 然后计算出每一个学生的 RANK, 最后取出排序在 前 N 个的学生即可; 变量字段 @ClassRank 和 @ CurrentClass 开始都是空,然后通过不断的赋值更新;由于学生是排好序的,因此后一个和前一个是同类,则每一个rank 就+1, 不是同一类时候就置1,然后开始下一个类的 rank 操作;

MYSQL time

unix 时间戳转换成时间

select id, from_unixtime(next_run_timestamp) from apscheduler_jobs_tbl;
select snapshot_id, name, snapshot_type, expired_days, created_at, utc_timestamp(), adddate(created_at, interval 
expired_days day) as expire, time_to_sec(timediff(adddate(created_at, interval expired_days day), utc_timestamp())) as lefted  from mebs_snapshots_tbl where expired_days!=-1 and status='mebs_snapshot_ready' and deleted=false order by lefted;

MySQL 分页查询

offset 分页查询

limit offset, row_count, limit row_count 等价于 limit 0, row_count; 分页是常见的场景,分页实现也有不同的版本; 简单的就是使用 limit. 分页一般是按照某种排序标准进行分页,例如学生的数学成绩,或者入学时间等;

以下语句按照时间顺序查询 第21 ~ 30条记录 即第三页,每页10条记录;

mysql> SELECT * FROM students ORDER BY Registry DESC LIMIT 20, 10;
+----+--------------+-------+------+------+------+----------+---------+---------------------+
| Id | Name         | Class | Age  | Sex  | Math | Computer | Physics | Registry            |
+----+--------------+-------+------+------+------+----------+---------+---------------------+
| 79 | Frank Miller |     5 |   39 |    |   43 |       24 |      78 | 2017-05-17 22:24:02 |
| 80 | Paul Smith   |     4 |   22 |    |   56 |       92 |      37 | 2017-05-17 22:24:02 |
| 77 | Simone Baker |     5 |   24 |    |   43 |       43 |       4 | 2017-05-17 22:24:00 |
| 78 | John Baker   |     4 |   32 |    |   86 |       56 |      50 | 2017-05-17 22:24:00 |
| 75 | Laura Smith  |     5 |   31 |    |   66 |        7 |      29 | 2017-05-17 22:23:58 |
| 76 | Eve Smith    |     5 |   26 |    |   59 |        5 |      81 | 2017-05-17 22:23:58 |
| 73 | John Baker   |     1 |   43 |    |   54 |       94 |       7 | 2017-05-17 22:23:56 |
| 74 | John Smith   |     3 |   36 |    |   58 |       13 |      64 | 2017-05-17 22:23:56 |
| 71 | Eve Smith    |     5 |   41 |    |   31 |        8 |      21 | 2017-05-17 22:23:54 |
| 72 | Paul Singer  |     3 |   36 |    |    9 |       11 |      52 | 2017-05-17 22:23:54 |
+----+--------------+-------+------+------+------+----------+---------+---------------------+
10 rows in set (0.00 sec)

value-based 分页查询

offset 版本的分页查询当面对大数据集合的时候,会非常低效,因为他总是先读出所有的数据,让后排序,这是非常耗时的。

分页查询优化

MySQL列运算操作

select isnull(item1,0)+isnull(item2,0)+isnull(item3,0) as itemAdd, usr from usr_table
select sum(isnull(item1,0)+isnull(item2,0)+isnull(item3,0))as itemSum  from usr_table

MySQL 索引优化

  1. 最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
  2. =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
  3. 尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
  4. 索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
  5. 尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

MySQL 事务和锁

drop table if exists `productsStock`;
create table `productsStock` (
    `id` int(11) not null auto_increment,
    `name` varchar(255) default null,
    `desc` text(1024) default null,
    `stock` int(11) default null,
    `version` int(64) default 0;
    primary key (`id`),
    unique key `idx_name` (`name`) using hash
)

插入数据

INSERT INTO `productsStock` VALUES ('1', 'prod11', '', '1000');
INSERT INTO `productsStock` VALUES ('2', 'prod12', '', '1000');
INSERT INTO `productsStock` VALUES ('3', 'prod13', '', '1000');
INSERT INTO `productsStock` VALUES ('4', 'prod14', '', '1000');
INSERT INTO `productsStock` VALUES ('5', 'prod15', '', '1000');
INSERT INTO `productsStock` VALUES ('6', 'prod16', '', '1000');
INSERT INTO `productsStock` VALUES ('7', 'prod17', '', '1000');
INSERT INTO `productsStock` VALUES ('8', 'prod18', '', '1000');
INSERT INTO `productsStock` VALUES ('9', 'prod19', '', '1000');

乐观锁

MYSQL乐观锁的实现和CAS是一样的原理,需要对每条记录增加version列进行控制,通过loop的方式进行重试,在查询和更新的时候获得的是同一个版本则更新成功,否则说明已经被其他实例修改,重试,伪代码如下:

int affectedCount = 0;
while (affectedCount == 0) {
    // 乐观锁,尝试修改,不成功则自旋重试
    Product product = execute("select * from productsStock where id=#{id}");
    if (product.getStock>0) {
        affectedCount = execute("update productsStock set stock=#{newStock}, version=#{product.version+1} where id=#{product.id} and version=#{product.version}");
    } else {
        return false;
    }
}
return true;

乐观锁适用于写的比较少,读多的场景。

悲观锁

悲观锁和synchronized一样,首先进行枷锁,然后进行更改操作,MySQL innodb 引擎在使用索引查询的时候会自动加行锁,即锁住某行记录。不需要加一个version列就可以做。

// 悲观锁,上来就先锁住
Product product = execute("select * from productsStock where id=#{id} for update");
if (product.getStock>0) {
    execute("update productsStock set stock=#{newStock} where id=#{product.id}")
} else {
    return false;
}

悲观锁适用于写的多频繁,读的少的场景。因为写的多场景下,采用CAS乐观锁大部分都是失败,导致自旋浪费CPU。不如直接采用悲观锁。

1、如果对读的响应度要求非常高,比如证券交易系统,那么适合用乐观锁,因为悲观锁会阻塞读
2、如果读远多于写,那么也适合用乐观锁,因为用悲观锁会导致大量读被少量的写阻塞
3、如果写操作频繁并且冲突比例很高,那么适合用悲观写独占锁

行锁、表锁

不同的引擎和使用方式会导致MYSQL使用不同方式加锁,使用MYISAM引擎,都是表锁,而采用INNODB引擎,由于InnoDB 预设是Row-Level Lock,所以只有「明确」的指定主键,MySQL 才会执行Row lock (只锁住被选取的数据) ,否则MySQL 将会执行Table Lock (将整个数据表单给锁住)。